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Motivation

H‘lai,n E(X’y)wp [fglea% ﬁ(fw (X =+ 6)7 y)]

1. The inner maximization problem of standard AT is to generate adversarial examples by
maximizing the classification loss.

2. The inner maximization problem of standard AT is to find model parameters by
minimizing the classification loss on adversarial examples.

3. The inner maximization problem can be regarded as the attack strategy that guides the
creation of AEs, which is the core to improve the model robustness. A training strategy is
designed accordingly, which significantly improves the network’s robustness.



Motivation

Xadv = X+ 0 g(X,a,W)

a is an attack strategy, i.e., the configuration of how to perform the adversarial
attack. For example, PGD attack has three attack parameters, i.e., the attack step
size, the attack iteration, and the maximal perturbation strength.
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Our main contributions are as follows:

1. We propose a novel adversarial training framework by introducing the concept of “learnable attack
strategy”’, which learns to automatically produce sample-dependent attack strategies to generate AEs. Our
framework can be combined with other state-of-the-art methods as a plug-and-play component.

2. \We propose two loss terms to guide the learning of the strategy network, which involve explicitly
evaluating the robustness of the target model and the accuracy of clean samples.

3. We conduct experiments and analyses on three databases to demonstrate the effectiveness of the
proposed method, and the proposed method outperforms state-of-the-art adversarial training methods.
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Iteration The target network is a convolutional
: network for image classification.
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Given an image, the strategy network outputs an attack strategy, Xadv = X+ 0 < Q(Xa a, W)‘
I.e., the configuration of how to perform the adversarial attack.
A combination of the selected values for these attack parameters
IS an attack strategy. The strategy network captures the

conditional distribution of a given x and 0.

g( 9 is the PGD attack. The process is equivalent
to solving the inner optimization problem, given
an attack strategy a, i.e., finding the optimal
perturbation to maximize the loss.




Method

Original Formulation of Adversarial Training:

IIEH E(x’y)wp £(fw (Xadv)a y)

Our Formulation of Adversarial Training:

H‘lﬂir]fl E(x’y)N’D mQaX Eamp(a‘x;ﬂ) £(fw(xadv)a y)

It can be observed that the two networks compete with each other in minimizing or maximizing the
same objective. learns to improve attack strategies according to the given samples to attack the
target network. At the beginning of the training phase, the target network is vulnerable, which a
weak attack can fool. Hence, the strategy network can easily generate effective attack strategies.
The strategies could be diverse because both weak and strong attacks can succeed. As the training
process goes on, the target network becomes more robust. The strategy network has to learn to
generate attack strategies that create stronger AEs. Therefore, the gaming mechanism could boost
the robustness of the target network gradually along with the improvement of the strategy network
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Method

Loss of adversarial training:
ﬁl(wﬁ 6) = E(f(xﬂd“b'ﬂ W)ay)

Loss of Evaluating Robustness:

L5(0) = —L(f(x324,,W),y)

Loss of Predicting Clean Samples:
[-:3(9) — _‘C(f(x:ﬁr)r y)
Formal Formulation:

IIEH E(x,y)wp 1]:151}{ Eaﬁ,p{mx;g) [£1(W, 9) —+ E}:EQ(Q) + ,BE;;(G)]



Method

Optimization of target network:
HETH E(x,-y)wDanp(a|x;H) [f’l (W, 9)]

Optimization of strategy network:

max J(8),

where J(0) := Ex y)~D Ea~p(ax:0) [£1 + Ly + BL3).

The biggest challenge of this optimization problem is that the process of AE generation is not
differentiable, namely, the gradient can not be backpropagated to the attack strategy through the
AEs. Moreover, there are some non-differentiable operations (e.g. choosing the iteration times)
related to attack , which sets an obstacle to backpropagate the gradient to the strategy network.
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Method
VEJ(Q) = VEE(x,y)wD]anp[alx;H) [ﬁﬂ]
- ]E(x,y]mﬂ f £{) ’ va(ﬂlx; Q)da

~Ex~p | Lo plalxi8) Vo log plaix: )da

= E(x,y)~DEa~p(alx;0)[Lo - Vo log p(alx; @),
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Method

Convergence Analysis

Theorem 1. Suppose that the objective function Lo = L1+
als+ BLs in (7) satisfied the gradient Lipschitz conditions
w.r.t. 0 and w, and Lo is p-strongly concave in ©, the
feasible set of 0. If X4, (X, W) is a o-approximate solution
of the !, ball with radius € constraint, the variance of the
stochastic gradient is bounded by a constant > > 0, and
we set the learning rate of w as

1 Lo(w?) — HEH Lo(w)
Ly’ o2TLy

71 = min

(14)

where Loy = LygLow /|t + Lww is the Lipschitz constants
of Lo, it holds that

T-1
E IE VC W < A f -+ LA LA
T —~ |:|| D( )||2] —_ 40- T fJ: ’ {15)







Experiments

Table 1. Test robustness (%) on the CIFAR-10 database using
ResNet18. Number in bold indicates the best.

Method | PGD-AT [33] | k=1 | k=10 | k=20 | k=40 | k=60

Clean | 8256 | 82.88 | 82.38 | 82.00 | 82.3 | 82.10
PGD-10 |  53.15 | 53.71 | 53.89 | 53.53 | 54.29 | 53.85
Time(min) | 261 | 1378 | 432 | 418 | 365 | 333

Table 6. Test robustness (%) on the CIFAR-10 database using
ResNet18. Number in bold indicates the best.

Ly Ly L3|clean | PGD-10 AA
v | 81.83 | 53.88  49.06
v | 81.54 | 5398 4934
v v | 8190 | 53.89 4920
v v V| 823 | 5429 49.89

Table 5. Test robustness (%) on the CIFAR-10 and CIFAR-100
database. Number in bold indicates the best.

Method

Database | Target network | | Clean | AA

Gowal etal [14] | 85.29 | 57.20
LAS-AWP(ours) | 85.66 | 57.86

LBGAT [¢] | 62.55 | 30.20
LAS-AWP(ours) | 67.31 | 31.92

CIFAR-10 ‘ WRN70-16

CIFAR-100 ‘ WRN34-20

Table 7. Test robustness (%) on the CIFAR-10 database using
WRN34-10. Comparisons with Madry, CAT, DART and FAT. The
results are reported in [5[]. Number in bold indicates the best.

Method | Clean | FGSM PGD-20 C&W

Madry-AT [27] | 87.3 56.1 45.8 46.8
CAT [0] 7743 | 57.17 46.06 42.28
DART [-] 85.03 | 63.53 48.70 47.27
FAT [51] 87.97 | 6594 49.86 48.65

LAS-Madry-AT | 84.95 | 67.16 55.61 54.31
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Experiments

Table 2. Test robustness (%) on the CIFAR-10 database using WRN34-10. Number in bold indicates the best.

Method | Clean PGD-10 PGD-20 PGD-50 C&W AA
PGD-AT [:7] 85.17 56.07 55.08 54.88 5391 51.69
TRADES [50] 85.72 56.75 56.1 55.9 53.87 53.40

MART [41] 84.17 58.98 58.56 58.06 5458 51.10

FAT [51] 87.97 50.31 49.86 48.79 48.65 4748

GAIRAT [57] 86.30 60.64 59.54 58.74 4557 40.30
AWP [45] 85.57 58.92 58.13 57.92 56.03 53.90
LBGAT [¥] 88.22 56.25 54.66 54.3 54.29 52.23

LAS-AT(ours) 86.23 57.64 56.49 56.12 55.73 53.58

LAS-TRADES(ours) | 85.24 58.01 57.07 56.8 5545 54.15
LAS-AWP(ours) 87.74 61.09 60.16 59.79 58.22 55.52

Table 3. Test robustness (%) on the CIFAR-100 database using WRN34-10. Number in bold indicates the best.

Method | Clean PGD-10 PGD-20 PGD-50 C&W  AA
PGD-AT [7] 60.89 3219 3169 3145  30.1 27.86
TRADES [50] 5861 2920 2866 2856 27.05 2594

SAT [35] 62.82  28.1 27.17 2676 2732 2457

AWP [45] 6038  34.13 3386 3365 3112 28386

LBGAT [¥] 60.64 3513 3475 3462 3065 29.33
LAS-AT(ours) 61.80 3345 3277 3254 3112 29.03
LAS-TRADES(ours) | 60.62 3299 3253 3239 2951 28.12
LAS-AWP(ours) | 64.89 3711 3636  36.13 3392 30.77
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Table 4. Test robustness (%) on the Tiny Imagenet database using

Pre ActResNetl8. Number in bold indicates the best.

Table 1. Results on GTSRB (%).

Method | Clean PGD-50 C&W  AA
PGD-AT [373] 4398 1998 176 13.78
TRADES [50] 39.16 1574 1292 1232

AWP [45] 4148 2251 19.02  17.34
LAS-AT(ours) 4486 2216 1854 16.74
LAS-TRADES(ours) | 4138 1836 145 14.08
LAS-AWP(ours) | 45.26 2342  19.88 18.42
Method | Clean PGD-50 C&W  AA

Clean | 9822 1263 1328 9.77

PGD-AT 90.34  59.02  60.04 57.54
TRADES 87.35 6195 6140 59.99

AWP 91.82 6494  64.69 6224

LAS-AT(ours) 91.98 6433  64.06 62.07
LAS-TRADES(ours) | 88.67 6326 6240 61.09

LAS-AWP(ours) | 93.17  67.03  67.77 65.21



Experiments
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Figure 4. The distribution evolution of the maximal perturbation
strength in LAS-PGD-AT during training.
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Figure 3. Comparisons with the hyper-parameter search methods
using WRN34-10 on the CIFAR-10 database. z-axis represents
the attack methods. y-axis represents the robust accuracy.
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Figure 1. Robustness accuracy
curves under PGD-10 attack on
the training and test data of
CIFAR-10.
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Experiments
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Table 1. Test robustness (%) on the CIFAR-10 database using ResNet18. Number in bold indicates the best.
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Experiments
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Figure 5. The evolution of the generated perturbation strength of several samples during the whole training process. X-axis represents the

training epoch. Y-axis represents the perturbation strength.
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Experiments
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HYDRA: Pruning Adversarially
Robust Neural Networks
Compressed model

Helper-based Adversarial Training:
Reducing Excessive Margin to
Achieve a Better Accuracy vs.

Robustness Trade-off

It uses additional 1M synthetic images in

training.

LTD: Low Temperature Distillation
for Robust Adversarial Training

Uncovering the Limits of
Adversarial Training against Norm-
Bounded Adversarial Examples
56.82% robust accuracy is due to the
original evaluation (AutoAttack =
MultiTargeted)

Fixing Data Augmentation to
Improve Adversarial Robustness
It uses additional 1M synthefic images in
training.

Improving Adversarial Robustness
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Examples
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Fixing Data Augmentation to
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Tt uses additional 1M synthetic images in
training.
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Tt uses additional 1M synthetic images in
training.
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Conclusion

» Learnable attack strategy: we propose a novel adversarial training framework
by introducing the concept of “learnable attack strategy”.

» Two loss terms: we also propose two loss terms that involve evaluating the
robustness of the target network and predicting clean samples.

» Superiority: extensive experimental evaluations are performed on three
benchmark databases to demonstrate the superiority of the proposed method.

» The code Is released at https://github.com/jiaxiaojunQAQ/LAS-AT .
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